
PMM U.S.S.R.,Vol.51,No.l,pp.50-56,1X37 OOZl-89x3/87 $10.00+0.00 
Printed in Great Britain 01988 Pergamon Press plc 

THE PROBLEM OF A CURVED LAYER OF COMPOSITE MATERIAL WITH DAVY SURFACES 
OF PERIODIC STRUCTURES 

A.L. KAUMKAROV, B.A. KUDRYAVTSEV, and V.Z. PARTON 

The state of stress and strain for a curved anisotropic inhomogeneous 
thin layer of periodic structure of variable thickness determined by 
wavy surfaces is investigated. The period of the structure and the wave 
dimensions on the surfaces are considered to be commensurate with the 
layer thickness in magnitude. 

A general averaging scheme is used /l, 2/, as is a two-scale expansion method /3/, which 
enables a passage to be made from the three-dimensional to the two-dimensional equations of 
elasticity theory. The effective stiffness moduli of the average shell obtained are here 
determined from the solution of auxiliary local problems in the periodicity cell. The model 
constructed enables the state of stress and strain of shells of composite materials with an 
arbitrary kind of periodic structure reinforcement (hummocks, waffles, ribs, or corrugations) 
to be investigated. In particular, it is possible to consider shells from a material with 
a stiff skeleton of periodic structure or stiff filaments, reinforcement from a material with 
properties different from the properties of the host layer material , and periodicallyperforated 
shells. In the limit case of "smooth" surfaces and a homogeneous material, the well-known 
model of an anisotropic shell is obtained. The proposed averaging method does not require 
replacement of the reinforcements by a certain special kind of contact forces /4/. This 
enables the influence of different reinforcements to be taken into account more rigorously 
and also enables the stresses to be evaluated directly at the points of the periodicity cell. 

1. We introduce a triorthogonal dimensionless coordinate system a,, a*? y such that the 
coordinate lines a, and a2 agree with the lines of principal curvature of the middle surface 
(for y = 0), while the y axis is directed along its normal. The Lame coefficients in such a 

coordinate system Hr = A,(1 + k,y), H, = A, (1 C k,Y), Hs = 
1; -4, (4, 4 (4 axe the coefficients of the first quadratic 
form, and k, (a), k, (a) are the principal middle surface 
curvatures while a = (a,, 4 

The elastic layer under consideration has a periodic 
structure with periodicity cell && (sketch) 

Fig.1 

(0 < a, < he, 0 < a2 < he, y- < Y -C Y'f 

y*=&-_ -+-heF* + al 
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The dimensionless small parameter e determines the 
layer thickness, characterizes the ratio betweentheperiodicity 
cell dimensions andthelayer thickness and is assumed to be 
a constant of the order of unity,F* and F- are different 
functions, in the general case, which define the upper and 
lowex layer surfaces. 

The physical components of the strain tensor and the displacement vector are connected 
by the relationships /5/ 

The equilibrium equations /6/ can be written in the form (PI are the bulk force components) 
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(1.2) 

The stresses and strains are related by Hooke's law 

Here and henceforth i, j, &n = 1,2,3; p,v,p,& = 'i,2; and summation is over identical 
subscripts, y = (VI, y4). 

We consider the elastic layer being investigated to be fabricated from a composite 
material possessing the periodicity cell 62,, and therefore, the elasticity coefficients 
alfln(g,z) are singly-periodic functions in the variables y1 and y,. 

The conditions 

0.4) 

are satisfied on the upper and lower surfaces of the layer, i.e., for y =y*, where n$ are 
unit normals, and p$ are external load components on the surfaces y = v*. 

2. We determine the solution of problem (l.l)-(1.4) in the form oftheasymptotic ex- 
pansions /l, 2/ 

ml = @) (a) -+ eu,(r) (a, y, 2) + e*u&*) (a, y, 2) -t . . . (24 
Here z@) (a, y, z) (m = 1, 2, , . . ) are singly-periodic functions in y,,. 
Taking into account that the layer thickness is small compared with the middle surface 

radii of curvature, we introduce the notation 

k, = eK, (a), kp = eK, (a), k, + k, = eh’, (a) (2.2) 

For the external forces we set 

& = f eerv* (a, y), ps* = =t e”ps* (a, y) 

PV = efv (a, y, 21, P, = e% (a, I, 4 

(2.3) 

(2.4) 

All the functions defined in (2.3) and (2.4) are periodic in y, and y, withtheperiodicity 

cell Q:{O-cy,-c1, O-cy,-ct, f<z(z+j, zrt = fVp f hF* (y). The external tangential 
loads working in tension or shear in relationships (2.3) are of order ea while the loads 
bending the layer are of order ea. The order of the bulk forces in (2.4) is one lower than 
their corresponding surface loads since it increases by one on integration over the layer 
thickness. 

To simplify the subsequent calculations, we use the notation fl = Aly,, E, = AJ, and we 
define the differential operators acting on the arbitrary components tcr by means of the 
formulas 

Taking into account that 

a i a 
Tf”=a&’ 

-=- 

(2.5) 

we obtain from (1.11, (2.1), (2.2) 

eiJ = e#) $- @ij”’ + 8'@ + . , , (2.6) 

It follows from (1.3) and (2.6) 

=u = U$j(@) + EUij(‘) + E’Uij”’ + * * . Gw 

U‘t’“’ i= Qtfb @* 4 SP’ h = 0% 1, 2% . . 4 

Taking (2.2) and (2.4) into accourt, (1.2) is expanded in powers of s”‘(m = -i,O, 1,2) 
in the following manner 
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(2.8) 

Taking account of (2.2) and (2.3), 
%I, 2, 3) 

conditions (1.4) are expanded in powers of P(m = 
according to the formulas 

Here 

(2.12) 

in conformity with (2.3) and (2.41, we have 

We note that in deriving relations (2.6)-(2.12) we took into account that the Lame' 
coefficients andthecomponents of the unit normals in the coordinate system introduced are 
expanded in s. 

3. We obtain from relationships [l..l), (2.11, (2.7) 

We use the notation 

(3.3) 

(3.4) 

Substituting (3.1) into the first equations in (2.01, we obtain 

D&l) = -d,,.,o,~~) (3.5) 

The solutions of (3.5) periodic in 6;r,$ should satisfy conditions (2.9) for m = 0, 
which can be written thus by using (3.11-(3.3): 

(bj#P’ + U~~~)~j* = 0 (2 =L Z*) (3.6) 

We represent the solution of (3.5), (3.6) in the form 

u&l) = UP (15, 2) OnP (a) t V# (a) (3.7) 

where UJ"(& a)are solutions periodic in fr. Es (with periods A,,A,, respectively) for the 
problem 

D&*” I= --Atnu (3.3) 

bTiVi* =J 0 (Z = z*); b;jY= Lt,&$’ + aijnv 

For n,v = 3.1 and 3.2 this problem is solved exactly 



53 

U,S’ G --a, up = up = 0, u*91 = -2, up = iyp = 0 (3.9) 
It follows from (3.9) 

b*jw = 0 (3.10) 
Substituting (3.7) into (3.1) and taking account of (3.10), we obtain 

(Qj(0) = ~*~~~~~~(o) (3.11) 
by using integration over the periodicity cell S-Z, we introduce the operation of taking 

the average in the variables lf1* &+I 2 

We note that differentiation with respect to the variables a , and a, is commutative with 
the averaging operations (3.12), and V is the volume of the cell 0. 

We take the average of the second equation in (2.8) by using conditions (2.9) for m = 1 
and the periodicity in y1 and y, 

Bi <oQ')> = 0 (3.13) 
Taking (3.11) into account for m =O the homogeneous Eqs.(3.13) and conditions (2.9) 

have the zero solution on(O) = o&) = &of = 0. We obtain from (3.21, 13.7) and (3.9) 

ur(O) zzz @@' = 0, u,(Of = M (a) (3.14) 

to @=_uv(a)-2 L ; 243 =sw --3 

The function w(a) introduced in (3.141 and also the function n1fm) of problem (3.5), 
(3.6) are not determined. Ithence follows from (3.11) that 

Oij@) = f) (3.15) 

4. Taking account of (3.14), we obtain from (l.l), (2.1) and (2.7) 

Substituting (3.15). and (4.1) into the second equation of (2.3) and condition (2.9), for 
m = 1, we obtain 

D&a)=- Ain~~nv -(ei*v + adirv)rcv (4.4) 

(kjda’ + aijnanv + zaijwvrsv) Nj* = 0 (2 = 2’) 

We represent the solution of (4.4), periodic in 51, $ in the form 

u&S) =: UP%aV (a) + vPvr,, (a) (4.5) 

where Ui"V(&,s)is the solution of the local problem (3.8) and V?+‘((~,Z) are periodic solutions 

in 80 El for the problems 

DrrY;"" = -es,m - zdt, (4.6) 

&;lNjf =i 0 (Z= Z*); $ T L$jg$ f ZUfjpV 

we note that the functions Al(a) and AS,(U) occur (3.8) and (4.6) and therefore the 
variables a, and a, also occur as parameters. Using relationship (4.51, we obtain from (4.1) 

(fij(l) = bij"'Wrv + Cij”“T&v (4.7) 
Following (3.12), we take the average of (3.8) and (4.6) which have first been multiplied 

by s and d. Using the periodicity in #I and g, we obtain 

<b#‘) ~=i <Zbaj”‘> = (ti>*‘> = <zCajb’“> = 0 (4.8) 

Taking account of (4.8) we obtain from (4.7) 

<a$@> = 0, <2U*j'"> = 0 (4.9) 

5. we take the average of the last two equations of (2.8). using the periodicity in 
y,, conditions (2.10) and (2.111, and relations (2.121, (3.15) and (4.91, we obtain 
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Bv <ut~P)) -I- rv i (fd = 0 
B, <aR,.j2))= 0 

B, <as,@,> 4 Ka <q.P> + 43 -t- <gs) = 0 

(5.1) 

(5.2) 

(5.3) 

80 60 

We take the average of the third equation in (2.8) for i = 1,2 
plying by z 

Using (S-4), we el.iminate the terms <oSF@)> from (5.3) 

i a 
--((4<=$~> + plr + <zfJ)-- &<@>- .44 aa,, 

&<&)) -t $3 -I- <ga> =o 

after first multi- 

(5.5) 

Only (IS,&)) and +a#)>, occur in (5.1) and (5.5), for which we obtain, by taking the 
average of (4.7), 

we note that only three functions w(a), z+(&), ~_+(a) occur in (5.6) in terms of %V, TV,, 
by virtue of (4.2) and (4.3). 

Substituting (5.6) into (5.1) and (5.5), we obtain a system of three constitutive 
equations in the functions w (a), v1 (a), v, (a), which govern the principal terms of the displace- 
ment vector and the stress tensor by means of (3.14) and (4.7). 

The coefficients <b@*), <zbMW>, <c@~)’ and <zc@~> are the effective stiffness moduli of 
the average shell which are determined from the solutions of the local problems (3.8) and 
(4.6). We note that the functions d,(a) and A,(U) occur in these problems in terms of the 
coordinates cr. %,. Therefore, if these functions are not constants, the effective moduli 
depend on the coordinates a,, a%. This means that even in the case of an initially homogeneous 
material, a "constructive" inhomogeneity can occur as a result of taking the average. 

6. We set up a connection between the model constructed and the theory of thin shells. 
Using the notation from /G, 7/ for the forces, moments, and transverse forces, and taking 
account of (3.15) and (4.3), we obtain 

TB = E* <qR”)) + . . ., S = i?(u~a(‘)) + . . . *t (6.1) 

MB = es <~a&> + . . . . 

H = es <m#> i_ . . . 1 iv, = es(u*S(a~> + . . . 

To deducetheelasticity relationships, we will solve the local problems (3.8) and (4.6). 
There is no dependence on y,,y, in the consideration of a "smooth" homogeneous shell F*s 0, 

Qfln = eonst, and the local problems are solved exactly. For instance, in the isotropic case 
the non-zero solutions of (3.8) (for (n = i,2) and (4.6) have the form 

Using (6.2), we obtain 

(bu”) = <6*P) = 
E m , (I&p) = &a”> 1 _.xi.. 

1-G 

<b#> = (b#) =z -$& s <zbi%v) = 0 

<cf$y> = 0, (zcbby) = -& <@it> 

Here E is Young's moduls, and Y is Poisson's ratio. 
Substituting (6.3) into (5.6), we find 

(6.31 
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Comparinq relationships f3.14), (4,2), (4.3) with the corresponding shell theory formulas 

/7/, we obtain 

e, = s mllr e, = 8 oaa. 0 = eZo,, (6.5) 
x1 = %1r x, = %I, z = %a 

Here %, q, 0 are the relative elongations and shear of the middle surface while ~1, Xa,r 
characterize the bending and torsion of the middle surface associated with the displacements 
w deflecting the points of the middle surface along its normal. 

Substituting (6.4) and 16.5) into (6.1), we obtain formulas connecting the forces and 
moments to the strains of the middle surface. They agree with thosein shell theory /7/. 
Substitution of (6.4) into (5.1) and (5.5), taking (6.5), (4.2) and (4.3) into account results 
in the system of equations used in shell theory within the framework of the Mushtari-Eonnell- 
Vlasov model /7/. 

7. we will examine two special cases of the model constructed that are of practical 
importance. 

A cylindrical layer of arbitrary shape. In the q,a, coordinate system, where cri is 
the distance measured along the generator , and a, is measured along the directrix of the 
cylindrical middle surface, we have /6, 7/ 

&=A,= 1, k,=O, k,=slir(& ct*'J 
In the case of a circular cylinder t(m,)=csast. 
We will use the notation RfQ=w(+);thenby virtue of (2.2) 

a,= i/S(e&, K* = oi 
We obtain from (4.2) and (4.3) 

Eqs.15.1) and (5.5) are written in the form 

The average stresses and moments are expressed in terms of the middle surface strains 
(7.2) by using the elasticity relationships (5.6). Since Ai and A, are constants in the case 
under consideration, the functions bg and CR can only depend on the coordinates RI h. II 

consequently, all the effective moduli in the elasticity relationships are constants. Their 
specific values depend on the form of the functions oijts(y1, y,, z) and p?t(y,,y,) and are determined 
from the solutions of the local problems (3.3) and (4.6). 

A plane layer. Let a,, 4, y be Cartesian coordinates, A,= A,=i. kl= 0, and b,=O. The 
main formulas are obtained from (7.2) and (7.3) for R=w+. ';?le elasticity relationships 
(5.6) can be written in the form 

(7.4) 

Since, as in the cylindrical case, all the effective moduli are constants, we obtain by 
substituting (7.4) into (7.3) (for R=ar) 

In the limit case of a "smooth" isotropic plate the effective moduli are determined 
(6.3) and the well-known equations of plate theory are obtained from (7.5). 

We note that despite the fact that the local problems (3.8) and (4.6) are described 

(7.5) 

from 

by 
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differential equations, they can also be solved in the case of practical importance of piece- 
wise-constant functions O*jln(y~,R,I) that model a fibrous material or composite comprised or a 
periodic system of qrains and a material filling the space between them. In this case the 
following continuity conditions on the grain surface /l, 2/ 

must be appended to the local problems. 
Here Iti are components of the vector normal to the contact surface, ‘where we have Ai,= 

in (3.8) and (4.6). 
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VARIATIONAL METHODS I N THREE-D IMENS I ONAL PROBLEMS OF 
NON-STATIONARY INTERACTION OF ELASTIC BODIES WITH FRICTION* 

A.A. SPEKTOR 

Three-dimensional contact problems are examined for the interaction between 
a moving elastic body and an elastic foundation under friction conditions. 
The desired friction force and slip fields depend on the time. A boundary 
value problem is formulated in the velocities and is reduced to a parabolic 
variational inequality. Its difference approximation is proposed and will 
be used to provide a foundation for formulating the problem in increments. 
A number of methods is proposed for the numerical solution of the problem. 
The time behaviour of the solution of the non-stationary problem is 
investigated, The non-stationarity effects in contact problems with 
friction are considered first under conditions of body displacement 
relative to the foundation /l/. Three-dimensional problems formulated in 
increments of the desired functions were studied in /2/. Quasistatic 
problems in increments and dynamic problems on the contact between a stamp 
and elastic solid of finite size were investigated /3/. The method of 
reducing the non-stationary parabolic problems to sequences of variational 
problems (in application to viscoplastic flow problems) was used in /4, 5/. 

1. Kinematic relationships. Boundary conditions. We examine the motion of an 
elastic body on an elastic foundation with a plane surface. we consider the velocities of the 
*Fr~kl.Mat~.~~an.,51,1~76-83,1987 


